209 research outputs found

    Towards a unification of HRT and SCOZA

    Full text link
    The Hierarchical Reference Theory (HRT) and the Self-Consistent Ornstein-Zernike Approximation (SCOZA) are two liquid state theories that both furnish a largely satisfactory description of the critical region as well as phase separation and the equation of state in general. Furthermore, there are a number of similarities that suggest the possibility of a unification of both theories. As a first step towards this goal we consider the problem of combining the lowest order gamma expansion result for the incorporation of a Fourier component of the interaction with the requirement of consistency between internal and free energies, leaving aside the compressibility relation. For simplicity we restrict ourselves to a simplified lattice gas that is expected to display the same qualitative behavior as more elaborate models. It turns out that the analytically tractable Mean Spherical Approximation is a solution to this problem, as are several of its generalizations. Analysis of the characteristic equations shows the potential for a practical scheme and yields necessary conditions any closure to the Ornstein Zernike relation must fulfill for the consistency problem to be well posed and to have a unique differentiable solution. These criteria are expected to remain valid for more general discrete and continuous systems, even if consistency with the compressibility route is also enforced where possible explicit solutions will require numerical evaluations.Comment: Minor changes in accordance with referee comment

    SCOZA for Monolayer Films

    Full text link
    We show the way in which the self-consistent Ornstein-Zernike approach (SCOZA) to obtaining structure factors and thermodynamics for Hamiltonian models can best be applied to two-dimensional systems such as thin films. We use the nearest-neighbor lattice gas on a square lattice as an illustrative example.Comment: 10 pages, 5 figure

    Casimir Friction Force Between Polarizable Media

    Full text link
    This work is a continuation of our recent series of papers on Casimir friction, for a pair of particles of low relative particle velocity. Each particle is modeled as a simple harmonic oscillator. Our basic method, as before, is the use of quantum mechanical statistical mechanics, involving the Kubo formula, at finite temperature. In this work we begin by analyzing the Casimir friction between two particles polarizable in all spatial directions, this being a generalization of our study in EPL 91, 60003 (2010), which was restricted to a pair of particles with longitudinal polarization only. For simplicity the particles are taken to interact via the electrostatic dipole-dipole interaction. Thereafter, we consider the Casimir friction between one particle and a dielectric half-space, and also the friction between two dielectric half-spaces. Finally, we consider general polarizabilities (beyond the simple one-oscillator form), and show how friction occurs at finite temperature when finite frequency regions of the imaginary parts of polarizabilities overlap.Comment: 13 pages latex, no figure

    Self-consistent Ornstein-Zernike approximation for molecules with soft cores

    Full text link
    The Self-Consistent Ornstein-Zernike Approximation (SCOZA) is an accurate liquid state theory. So far it has been tied to interactions composed of hard core repulsion and long-range attraction, whereas real molecules have soft core repulsion at short distances. In the present work, this is taken into account through the introduction of an effective hard core with a diameter that depends upon temperature only. It is found that the contribution to the configurational internal energy due to the repulsive reference fluid is of prime importance and must be included in the thermodynamic self-consistency requirement on which SCOZA is based. An approximate but accurate evaluation of this contribution relies on the virial theorem to gauge the amplitude of the pair distribution function close to the molecular surface. Finally, the SCOZA equation is transformed by which the problem is reformulated in terms of the usual SCOZA with fixed hard core reference system and temperature-dependent interaction

    The Reality of Casimir Friction

    Full text link
    For more than 35 years theorists have studied quantum or Casimir friction, which occurs when two smooth bodies move transversely to each other, experiencing a frictional dissipative force due to quantum electromagnetic fluctuations, which break time-reversal symmetry. These forces are typically very small, unless the bodies are nearly touching, and consequently such effects have never been observed, although lateral Casimir forces have been seen for corrugated surfaces. Partly because of the lack of contact with phenomena, theoretical predictions for the frictional force between parallel plates, or between a polarizable atom and a metallic plate, have varied widely. Here we review the history of these calculations, show that theoretical consensus is emerging, and offer some hope that it might be possible to experimentally confirm this phenomenon of dissipative quantum electrodynamics.Comment: 12 pages, 2 figure

    Casimir Friction Force and Energy Dissipation for Moving Harmonic Oscillators

    Full text link
    The Casimir friction problem for a pair of dielectric particles in relative motion is analyzed, utilizing a microscopic model in which we start from statistical mechanics for harmonically oscillating particles at finite temperature moving nonrelativistically with constant velocity. The use of statistical mechanics in this context has in our opinion some definite advantages, in comparison with the more conventional quantum electrodynamic description of media that involves the use of a refractive index. The statistical-mechanical description is physical and direct, and the oscillator model, in spite of its simplicity, is nevertheless able to elucidate the essentials of the Casimir friction. As is known, there are diverging opinions about this kind of friction in the literature. Our treatment elaborates upon, and extends, an earlier theory presented by us back in 1992. There we found a finite friction force at any finite temperature, whereas at zero temperature the model led to a zero force. As an additional development in the present paper we evaluate the energy dissipation making use of an exponential cutoff truncating the relative motion of the oscillators. For the dissipation we also establish a general expression that is not limited to the simple oscillator model.Comment: 12 pages, no figures. Discussion extended, references added. To appear in Europhysics Letter

    The Casimir Problem of Spherical Dielectrics: Quantum Statistical and Field Theoretical Approaches

    Full text link
    The Casimir free energy for a system of two dielectric concentric nonmagnetic spherical bodies is calculated with use of a quantum statistical mechanical method, at arbitrary temperature. By means of this rather novel method, which turns out to be quite powerful (we have shown this to be true in other situations also), we consider first an explicit evaluation of the free energy for the static case, corresponding to zero Matsubara frequency (n=0n=0). Thereafter, the time-dependent case is examined. For comparison we consider the calculation of the free energy with use of the more commonly known field theoretical method, assuming for simplicity metallic boundary surfaces.Comment: 31 pages, LaTeX, one new reference; version to appear in Phys. Rev.
    • …
    corecore